Apache Spark is an open-source distributed computing platform popular for handling large amounts of data and performing analytics. With your level of experience, I believe your opinions could be beneficial in comprehending its complexity. As I’m getting ready for interviews, I’m eager to expand my knowledge and expertise in this field. I’m asking for your help in comprehending the essential components and possible interview questions associated with Apache Spark. Your knowledge and experience would be greatly helpful in helping me prepare for these interviews and ensure I am adequately prepared for the rapidly changing data processing industry.
Top 30+ Spark Interview Questions
Apache Spark is an open-source, lightning-quick computation platform based on Hadoop and MapReduce. It supports a variety of computational approaches for rapid and efficient processing. Spark is recognized for its in-memory cluster computing, which is the primary factor in enhancing the processing speed of Spark applications. Matei Zaharia developed Spark as a Hadoop subproject at UC Berkeley’s AMPLab in 2009. It was later open-sourced in 2010 under the BSD License and contributed to the Apache Software Foundation in 2013. Spark rose to the top of the Apache Foundation’s project list beginning in 2014.
In the ever-changing field of data processing and analytics, knowing Apache Spark is an essential skill for individuals wishing to flourish in big data technology. Whether you’re preparing for your first Spark interview or trying to further your career, a thorough grasp of Spark interview questions is critical to success.
Starting a Spark interview may be both exciting and difficult. Employers are keen to identify people who understand Spark’s design, programming paradigms, and seamless interaction with a variety of data sources. This thorough book is intended to provide you with the information and confidence necessary to succeed in Spark interviews.
Our handpicked Spark interview questions cover the framework’s breadth and complexity. From basic notions to complex optimization methodologies, we’ve accumulated an extensive list to guarantee you’re ready for every interview circumstance. So, brace up as we delve deep into the realm of Spark interview questions, providing you with the knowledge you need to flourish in your next professional meeting.
Here we have compiled a list of the top Apache Spark interview questions. These will help you gauge your Apache Spark preparation for cracking that upcoming interview. Do you think you can get the answers right? Well, you’ll only know once you’ve gone through it!
Question: Can you explain the key features of Apache Spark?
Answer:
Question: What advantages does Spark offer over Hadoop MapReduce?
Answer:
Question: Please explain the concept of RDD (Resilient Distributed Dataset). Also, state how you can create RDDs in Apache Spark.
Answer: An RDD or Resilient Distribution Dataset is a fault-tolerant collection of operational elements that are capable to run in parallel. Any partitioned data in an RDD is distributed and immutable.
Fundamentally, RDDs are portions of data that are stored in the memory distributed over many nodes. These RDDs are lazily evaluated in Spark, which is the main factor contributing to the hastier speed achieved by Apache Spark. RDDs are of two types:
There are two ways of creating an RDD in Apache Spark:
method val DataArray = Array(22,24,46,81,101) val DataRDD = sc.parallelize(DataArray)
Question: What are the various functions of Spark Core?
Answer: Spark Core acts as the base engine for large-scale parallel and distributed data processing. It is the distributed execution engine used in conjunction with the Java, Python, and Scala APIs that offer a platform for distributed ETL (Extract, Transform, Load) application development.
Various functions of Spark Core are:
Furthermore, additional libraries built on top of the Spark Core allow it to diverse workloads for machine learning, streaming, and SQL query processing.
Question: Please enumerate the various components of the Spark Ecosystem.
Answer:
Question: Is there any API available for implementing graphs in Spark?
Answer: GraphX is the API used for implementing graphs and graph-parallel computing in Apache Spark. It extends the Spark RDD with a Resilient Distributed Property Graph. It is a directed multi-graph that can have several edges in parallel.
Each edge and vertex of the Resilient Distributed Property Graph has user-defined properties associated with it. The parallel edges allow for multiple relationships between the same vertices.
In order to support graph computation, GraphX exposes a set of fundamental operators, such as joinVertices, mapReduceTriplets, and subgraph, and an optimized variant of the Pregel API.
The GraphX component also includes an increasing collection of graph algorithms and builders for simplifying graph analytics tasks.
Question: Tell us how will you implement SQL in Spark?
Answer: Spark SQL modules help in integrating relational processing with Spark’s functional programming API. It supports querying data via SQL or HiveQL (Hive Query Language).
Also, Spark SQL supports a galore of data sources and allows for weaving SQL queries with code transformations. DataFrame API, Data Source API, Interpreter & Optimizer, and SQL Service are the four libraries contained by the Spark SQL.
Question: What do you understand by the Parquet file?
Answer: Parquet is a columnar format that is supported by several data processing systems. With it, Spark SQL performs both read as well as write operations. Having columnar storage has the following advantages:
Question: Can you explain how you can use Apache Spark along with Hadoop?
Answer: Having compatibility with Hadoop is one of the leading advantages of Apache Spark. The duo makes up for a powerful tech pair. Using Apache Spark and Hadoop allows for making use of Spark’s unparalleled processing power in line with the best of Hadoop’s HDFS and YARN abilities.
Following are the ways of using Hadoop Components with Apache Spark:
Question: Name various types of Cluster Managers in Spark.
Answer:
Question: Is it possible to use Apache Spark for accessing and analyzing data stored in Cassandra databases?
Answer: Yes, it is possible to use Apache Spark for accessing as well as analyzing data stored in Cassandra databases using the Spark Cassandra Connector. It needs to be added to the Spark project during which a Spark executor talks to a local Cassandra node and will query only local data.
Connecting Cassandra with Apache Spark allows making queries faster by means of reducing the usage of the network for sending data between Spark executors and Cassandra nodes.
Question: What do you mean by the worker node?
Answer: Any node that is capable of running the code in a cluster can be said to be a worker node. The driver program needs to listen for incoming connections and then accept the same from its executors. Additionally, the driver program must be network addressable from the worker nodes.
A worker node is basically a slave node. The master node assigns work that the worker node then performs. Worker nodes process data stored on the node and report the resources to the master node. The master node schedule tasks based on resource availability.
Question: Please explain the sparse vector in Spark.
Answer: A sparse vector is used for storing non-zero entries for saving space. It has two parallel arrays:
An example of a sparse vector is as follows:
Vectors.sparse(7,Array(0,1,2,3,4,5,6),Array(1650d,50000d,800d,3.0,3.0,2009,95054))
Question: How will you connect Apache Spark with Apache Mesos?
Answer: Step by step procedure for connecting Apache Spark with Apache Mesos is:
Question: Can you explain how to minimize data transfers while working with Spark?
Answer: Minimizing data transfers as well as avoiding shuffling helps in writing Spark programs capable of running reliably and fast. Several ways for minimizing data transfers while working with Apache Spark are:
Question: What are broadcast variables in Apache Spark? Why do we need them?
Answer: Rather than shipping a copy of a variable with tasks, a broadcast variable helps in keeping a read-only cached version of the variable on each machine.
Broadcast variables are also used to provide every node with a copy of a large input dataset. Apache Spark tries to distribute broadcast variables by using effectual broadcast algorithms for reducing communication costs.
Using broadcast variables eradicates the need of shipping copies of a variable for each task. Hence, data can be processed quickly. Compared to an RDD lookup(), broadcast variables assist in storing a lookup table inside the memory that enhances retrieval efficiency.
Question: Please provide an explanation on DStream in Spark.
Answer: DStream is a contraction for Discretized Stream. It is the basic abstraction offered by Spark Streaming and is a continuous stream of data. DStream is received from either a processed data stream generated by transforming the input stream or directly from a data source.
A DStream is represented by a continuous series of RDDs, where each RDD contains data from a certain interval. An operation applied to a DStream is analogous to applying the same operation on the underlying RDDs. A DStream has two operations:
It is possible to create DStream from various sources, including Apache Kafka, Apache Flume, and HDFS. Also, Spark Streaming provides support for several DStream transformations.
Question: Does Apache Spark provide checkpoints?
Answer: Yes, Apache Spark provides checkpoints. They allow for a program to run all around the clock in addition to making it resilient towards failures not related to application logic. Lineage graphs are used for recovering RDDs from a failure.
Apache Spark comes with an API for adding and managing checkpoints. The user then decides which data to the checkpoint. Checkpoints are preferred over lineage graphs when the latter are long and have wider dependencies.
Question: What are the different levels of persistence in Spark?
Answer: Although the intermediary data from different shuffle operations automatically persists in Spark, it is recommended to use the persist () method on the RDD if the data is to be reused.
Apache Spark features several persistence levels for storing the RDDs on disk, memory, or a combination of the two with distinct replication levels. These various persistence levels are:
Question: Can you list down the limitations of using Apache Spark?
Answer:
Question: Define Apache Spark?
Answer: Apache Spark is an easy to use, highly flexible and fast processing framework which has an advanced engine that supports the cyclic data flow and in-memory computing process. It can run as a standalone in Cloud and Hadoop, providing access to varied data sources like Cassandra, HDFS, HBase, and various others.
Question: What is the main purpose of the Spark Engine?
Answer: The main purpose of the Spark Engine is to schedule, monitor, and distribute the data application along with the cluster.
Question: Define Partitions in Apache Spark?
Answer: Partitions in Apache Spark is meant to split the data in MapReduce by making it smaller, relevant, and more logical division of the data. It is a process that helps in deriving the logical units of data so that the speedy pace can be applied for data processing. Apache Spark is partitioned in Resilient Distribution Datasets (RDD).
Question: What are the main operations of RDD?
Answer: There are two main operations of RDD which includes:
Question: Define Transformations in Spark?
Answer: Transformations are the functions that are applied to RDD that helps in creating another RDD. Transformation does not occur until action takes place. The examples of transformation are Map () and filer().
Question: What is the function of the Map ()?
Answer: The function of the Map () is to repeat over every line in the RDD and, after that, split them into new RDD.
Question: What is the function of filer()?
Answer: The function of filer() is to develop a new RDD by selecting the various elements from the existing RDD, which passes the function argument.
Question: What are the Actions in Spark?
Answer: Actions in Spark helps in bringing back the data from an RDD to the local machine. It includes various RDD operations that give out non-RDD values. The actions in Sparks include functions such as reduce() and take().
Question: What is the difference between reducing () and take() function?
Answer: Reduce() function is an action that is applied repeatedly until the one value is left in the last, while the take() function is an action that takes into consideration all the values from an RDD to the local node.
Question: What are the similarities and differences between coalesce () and repartition () in Map Reduce?
Answer: The similarity is that both Coalesce () and Repartition () in Map Reduce are used to modify the number of partitions in an RDD. The difference between them is that Coalesce () is a part of repartition(), which shuffles using Coalesce(). This helps repartition() to give results in a specific number of partitions with the whole data getting distributed by application of various kinds of hash practitioners.
Question: Define YARN in Spark?
Answer: YARN in Spark acts as a central resource management platform that helps in delivering scalable operations throughout the cluster and performs the function of a distributed container manager.
Question: Define PageRank in Spark? Give an example?
Answer: PageRank in Spark is an algorithm in Graphix which measures each vertex in the graph. For example, if a person on Facebook, Instagram, or any other social media platform has a huge number of followers than his/her page will be ranked higher.
Question: What is Sliding Window in Spark? Give an example?
Answer: A Sliding Window in Spark is used to specify each batch of Spark streaming that has to be processed. For example, you can specifically set the batch intervals and several batches that you want to process through Spark streaming.
Question: What are the benefits of Sliding Window operations?
Answer: Sliding Window operations have the following benefits:
Question: Define RDD Lineage?
Answer: RDD Lineage is a process of reconstructing the lost data partitions because Spark cannot support the data replication process in its memory. It helps in recalling the method used for building other datasets.
Question: What is a Spark Driver?
Answer: Spark Driver is referred to as the program which runs on the master node of the machine and helps in declaring the transformation and action on the data RDDs. It helps in creating SparkContext connected with the given Spark Master and delivers RDD graphs to Masters in the case where only the cluster manager runs.
Question: What kinds of file systems are supported by Spark?
Answer: Spark supports three kinds of file systems, which include the following:
Question: Define Spark Executor?
Answer: Spark Executor supports the SparkContext connecting with the cluster manager through nodes in the cluster. It runs the computation and data storing process on the worker node.
Question: Can we run Apache Spark on the Apache Mesos?
Answer: Yes, we can run Apache Spark on the Apache Mesos by using the hardware clusters that are managed by Mesos.
Question: Can we trigger automated clean-ups in Spark?
Answer: Yes, we can trigger automated clean-ups in Spark to handle the accumulated metadata. It can be done by setting the parameters, namely, “spark.cleaner.ttl.”
Question: What is another method than “Spark.cleaner.ttl” to trigger automated clean-ups in Spark?
Answer: Another method than “Spark.clener.ttl” to trigger automated clean-ups in Spark is by dividing the long-running jobs into different batches and writing the intermediary results on the disk.
Question: What is the role of Akka in Spark?
Answer: Akka in Spark helps in the scheduling process. It helps the workers and masters to send and receive messages for workers for tasks and master requests for registering.
Question: Define SchemaRDD in Apache Spark RDD?
Answer: SchemmaRDD is an RDD that carries various row objects such as wrappers around the basic string or integer arrays along with schema information about types of data in each column. It is now renamed as DataFrame API.
Question: Why is SchemaRDD designed?
Answer: SchemaRDD is designed to make it easier for the developers for code debugging and unit testing on the SparkSQL core module.
Question: What is the basic difference between Spark SQL, HQL, and SQL?
Answer: Spark SQL supports SQL and Hiver Query language without changing any syntax. We can join SQL and HQL table with the Spark SQL.
Conclusion
Our voyage through the world of Apache Spark interview questions has been nothing short of insightful. As you begin on your professional journey, equipped with the knowledge obtained from this thorough book, the power of Apache Spark is set to serve as your career catalyst.
By digging into the depths of Apache Spark’s architecture, programming paradigm, and optimization approaches, you’ve provided yourself with the tools to traverse the hurdles of Spark interviews. Apache Spark’s agility in managing large datasets and providing seamless data processing across several sources highlights its importance in the ever-changing environment of big data technology.
In the competitive environment of data engineering and analytics, a thorough grasp of Apache Spark is more than an advantage; it is a defining element. As you prepare for interviews and professional interactions, remember that Apache Spark is more than just a framework; it is a dynamic force pushing innovation in the field of distributed computing.
So, whether you’re a seasoned professional looking to expand your knowledge or a beginner to the world of Spark interviews, the knowledge you get from our investigation will certainly move you forward. Here’s to understanding the Apache Spark interview landscape and seizing the opportunity it presents on your professional journey.
That completes the list of the 50 Top Spark interview questions. Going through these questions will allow you to check your Spark knowledge as well as help prepare for an upcoming Apache Spark interview.